击右上方红色按钮关注“web秀”,让你真正秀起来!
要理解 JavaScript中浅拷贝和深拷贝的区别,首先要明白JavaScript的数据类型。JavaScript有两种数据类型,基础数据类型和引用数据类型。
1. 基础数据类型: undefined、boolean、number、string、null,保存在栈内存中的简单数据
2. 引用数据类型:Array、对象、Function,保存在堆内存空间中
如下图:
JavaScript中浅拷贝和深拷贝的区别和实现
注释:
a1=0;a2='this is str';a3=null, 存放在栈内存中;
var c=[1,2,3] 与 var d={m:20} ,**变量名与内存地址存储在栈内存中**,**但是**[1,2,3]与{m:20} 作为**对象存储在堆内存中**;
var a=20; var b=a;
如下图:
JavaScript中浅拷贝和深拷贝的区别和实现
var m={ a:10, b:20 }; var n=m;
JavaScript中浅拷贝和深拷贝的区别和实现
m与n指向同一个内存空间,当m或者n改变时,另一个也跟着改变
如
m.a='web秀'; console.log(n.a); // 输出 web秀
怎么样使引用数据类型有各自独立的内存空间???
采用递归的方法拷贝对象
JavaScript中浅拷贝和深拷贝的区别和实现
## 奇技淫巧
利用**基础数据类型**方式,把对象转换成字符串,进行复制。具体点说就是,用JSON.stringify与JSON.parse实现深拷贝。原因是JSON.stringify(obj)转换成字符串,变成基本数据类型,基本类型拷贝是直接在栈内存新开空间,直接复制一份名-值,不影响之前的对象。请看代码:
JavaScript中浅拷贝和深拷贝的区别和实现
1. 浅拷贝(shallow copy):只复制指向某个对象的指针,而不复制对象本身,新旧对象共享一块内存;
2. 深拷贝(deep copy):复制并创建一个一摸一样的对象,不共享内存,修改新对象,旧对象保持不变;
实现深拷贝主要有2种方法
(1)递归
(2)JSON.stringify结合JSON.parse
喜欢小编的点击关注哦,了解更多知识!
者:Zied Haj-Yahia
翻译:张玲
校对:丁楠雅
本文约2500字,建议阅读15分钟。
本文为你简要介绍深度学习的基本构成、模型优化的几种方式和模型训练的一些最佳实践。
一年多来,我在LinkedIn、Medium和Arxiv上阅读了不少深度学习相关文章和研究论文。当我几周之前开始麻省理工学院6.S191深度学习在线课程(这里是课程网站的链接)以后,我决定写下这一系列的文章来加深我对深度学习的结构化理解。
我将发布以下4个课程:
对于每门课程,我将概述主要概念,并根据以前的阅读资料以及我在统计学和机器学习方面的背景增加更多的细节和解释。
从第2课程开始,我还将为每一课的开源数据集添加一个应用程序。
好的,让我们开始吧!
深度学习简介
背景
传统的机器学习模型在处理结构化数据方面一直非常强大,并且已经被企业广泛用于信用评分、客户流失预测、消费者定位等。
这些模型的成功很大程度上取决于特征工程阶段的性能:我们越接近业务,从结构化数据中提取相关知识越多,模型就越强大。
当涉及到非结构化数据(图像、文本、语音、视频)时,手动特征工程是耗时的、脆弱的,而且在实践中是不可扩展的,这就是神经网络因其可以从原始数据中自动发现特征或者分类所需要的表示而越来越受欢迎的原因。它取代手动特征工程,允许一台机器既能学习特征又能利用这些特征执行特定的任务。
硬件(GPU)和软件(与AI相关的高级模型/研究)的进步也提升了神经网络的学习效果。
基本架构
深度学习的基本组成部分是感知器,它是神经网络中的单个神经元。
给定一组有限的m个输入(例如,m个单词或m个像素),我们将每个输入乘以一个权重
,然后对输入的加权组合进行求和,并添加一个偏差,最后将它们输入非线性激活函数,输出
。
深度神经网络只是组合多个感知器(隐藏层),以产生输出。
现在,我们已经了解了深度神经网络的基本架构,让我们看看它如何用于给定的任务。
训练神经网络
比方说,对于一组X射线图像,我们需要模型来自动区分病人与正常人。
为此,机器学习模型需要像人一样通过观察病人和正常人的图像来学会区分这两类图像。因此,它们自动理解可以更好地描述每类图像的模式,这就是我们所说的训练阶段。
具体地说,模式是一些输入(图像、部分图像或其他模式)的加权组合。因此,训练阶段只不过是我们估计模型权重(也称为参数)的阶段。
当谈论估计时,谈论的是我们必须优化的目标函数。构建这个函数,应该最好地反映训练阶段的性能。当涉及到预测任务时,这个目标函数通常称为损失函数,度量不正确的预测所产生的成本。当模型预测非常接近真实输出的东西时,损失函数非常低,反之亦然。
在存在输入数据的情况下,我们计算经验损失(分类的二元交叉熵损失和回归的均方差损失)来度量整个数据集上的总损失。
由于损失是网络权重的函数,我们的任务是找到实现最低损失的权重集:
如果只有两个权重
,我们可以绘制下面的损失函数图。我们想要做的是找出这种损失的最小值,从而找出损失达到最小值时的权重值。
为了最小化损失函数,我们可以应用梯度下降算法:
注意:
神经网络实践
总结
第一篇文章是对深度学习的介绍,可归纳为3个要点:
下一篇文章将是关于神经网络的序列建模。我们将学习如何模拟序列,重点关注递归神经网络(RNN)及其短期记忆和长期短期记忆(LSTM)以及它们在多个时间步长内跟踪信息的能力。
敬请关注!
原文标题:Introduction to Deep Learning原文链接:https://www.kdnuggets.com/2018/09/introduction-deep-learning.html
译者简介
张玲,在岗数据分析师,计算机硕士毕业。从事数据工作,需要重塑自我的勇气,也需要终生学习的毅力。但我依旧热爱它的严谨,痴迷它的艺术。数据海洋一望无境,数据工作充满挑战。感谢数据派THU提供如此专业的平台,希望在这里能和最专业的你们共同进步!
— 完 —
关注清华-青岛数据科学研究院官方微信公众平台“THU数据派”及姊妹号“数据派THU”获取更多讲座福利及优质内容。
选自Floydhub
作者:Emil Wallner
机器之心编译
如何用前端页面原型生成对应的代码一直是我们关注的问题,本文作者根据 pix2code 等论文构建了一个强大的前端代码生成模型,并详细解释了如何利用 LSTM 与 CNN 将设计原型编写为 HTML 和 CSS 网站。
项目链接:github.com/emilwallner…
在未来三年内,深度学习将改变前端开发。它将会加快原型设计速度,拉低开发软件的门槛。
Tony Beltramelli 在去年发布了论文《pix2code: Generating Code from a Graphical User Interface Screenshot》,Airbnb 也发布Sketch2code(airbnb.design/sketching-i…)。
目前,自动化前端开发的最大阻碍是计算能力。但我们已经可以使用目前的深度学习算法,以及合成训练数据来探索人工智能自动构建前端的方法。在本文中,作者将教神经网络学习基于一张图片和一个设计模板来编写一个 HTML 和 CSS 网站。以下是该过程的简要概述:
1)向训练过的神经网络输入一个设计图
2)神经网络将图片转化为 HTML 标记语言
3)渲染输出
我们将分三步从易到难构建三个不同的模型,首先,我们构建最简单地版本来掌握移动部件。第二个版本 HTML 专注于自动化所有步骤,并简要解释神经网络层。在最后一个版本 Bootstrap 中,我们将创建一个模型来思考和探索 LSTM 层。
代码地址:
所有 FloydHub notebook 都在 floydhub 目录中,本地 notebook 在 local 目录中。
本文中的模型构建基于 Beltramelli 的论文《pix2code: Generating Code from a Graphical User Interface Screenshot》和 Jason Brownlee 的图像描述生成教程,并使用 Python 和 Keras 完成。
核心逻辑
我们的目标是构建一个神经网络,能够生成与截图对应的 HTML/CSS 标记语言。
训练神经网络时,你先提供几个截图和对应的 HTML 代码。网络通过逐个预测所有匹配的 HTML 标记语言来学习。预测下一个标记语言的标签时,网络接收到截图和之前所有正确的标记。
这里是一个简单的训练数据示例:docs.google.com/spreadsheet…。
创建逐词预测的模型是现在最常用的方法,也是本教程使用的方法。
注意:每次预测时,神经网络接收的是同样的截图。也就是说如果网络需要预测 20 个单词,它就会得到 20 次同样的设计截图。现在,不用管神经网络的工作原理,只需要专注于神经网络的输入和输出。
我们先来看前面的标记(markup)。假如我们训练神经网络的目的是预测句子「I can code」。当网络接收「I」时,预测「can」。下一次时,网络接收「I can」,预测「code」。它接收所有之前单词,但只预测下一个单词。
神经网络根据数据创建特征。神经网络构建特征以连接输入数据和输出数据。它必须创建表征来理解每个截图的内容和它所需要预测的 HTML 语法,这些都是为预测下一个标记构建知识。把训练好的模型应用到真实世界中和模型训练过程差不多。
我们无需输入正确的 HTML 标记,网络会接收它目前生成的标记,然后预测下一个标记。预测从「起始标签」(start tag)开始,到「结束标签」(end tag)终止,或者达到最大限制时终止。
Hello World 版
现在让我们构建 Hello World 版实现。我们将馈送一张带有「Hello World!」字样的截屏到神经网络中,并训练它生成对应的标记语言。
首先,神经网络将原型设计转换为一组像素值。且每一个像素点有 RGB 三个通道,每个通道的值都在 0-255 之间。
为了以神经网络能理解的方式表征这些标记,我使用了 one-hot 编码。因此句子「I can code」可以映射为以下形式。
在上图中,我们的编码包含了开始和结束的标签。这些标签能为神经网络提供开始预测和结束预测的位置信息。以下是这些标签的各种组合以及对应 one-hot 编码的情况。
我们会使每个单词在每一轮训练中改变位置,因此这允许模型学习序列而不是记忆词的位置。在下图中有四个预测,每一行是一个预测。且左边代表 RGB 三色通道和之前的词,右边代表预测结果和红色的结束标签。
#Length of longest sentence max_caption_len=3 #Size of vocabulary vocab_size=3 # Load one screenshot for each word and turn them into digits images=[] for i in range(2): images.append(img_to_array(load_img('screenshot.jpg', target_size=(224, 224)))) images=np.array(images, dtype=float) # Preprocess input for the VGG16 model images=preprocess_input(images) #Turn start tokens into one-hot encoding html_input=np.array( [[[0., 0., 0.], #start [0., 0., 0.], [1., 0., 0.]], [[0., 0., 0.], #start <HTML>Hello World!</HTML> [1., 0., 0.], [0., 1., 0.]]]) #Turn next word into one-hot encoding next_words=np.array( [[0., 1., 0.], # <HTML>Hello World!</HTML> [0., 0., 1.]]) # end # Load the VGG16 model trained on imagenet and output the classification feature VGG=VGG16(weights='imagenet', include_top=True) # Extract the features from the image features=VGG.predict(images) #Load the feature to the network, apply a dense layer, and repeat the vector vgg_feature=Input(shape=(1000,)) vgg_feature_dense=Dense(5)(vgg_feature) vgg_feature_repeat=RepeatVector(max_caption_len)(vgg_feature_dense) # Extract information from the input seqence language_input=Input(shape=(vocab_size, vocab_size)) language_model=LSTM(5, return_sequences=True)(language_input) # Concatenate the information from the image and the input decoder=concatenate([vgg_feature_repeat, language_model]) # Extract information from the concatenated output decoder=LSTM(5, return_sequences=False)(decoder) # Predict which word comes next decoder_output=Dense(vocab_size, activation='softmax')(decoder) # Compile and run the neural network model=Model(inputs=[vgg_feature, language_input], outputs=decoder_output) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') # Train the neural network model.fit([features, html_input], next_words, batch_size=2, shuffle=False, epochs=1000) 复制代码
在 Hello World 版本中,我们使用三个符号「start」、「Hello World」和「end」。字符级的模型要求更小的词汇表和受限的神经网络,而单词级的符号在这里可能有更好的性能。
以下是执行预测的代码:
# Create an empty sentence and insert the start token sentence=np.zeros((1, 3, 3)) # [[0,0,0], [0,0,0], [0,0,0]] start_token=[1., 0., 0.] # start sentence[0][2]=start_token # place start in empty sentence # Making the first prediction with the start token second_word=model.predict([np.array([features[1]]), sentence]) # Put the second word in the sentence and make the final prediction sentence[0][1]=start_token sentence[0][2]=np.round(second_word) third_word=model.predict([np.array([features[1]]), sentence]) # Place the start token and our two predictions in the sentence sentence[0][0]=start_token sentence[0][1]=np.round(second_word) sentence[0][2]=np.round(third_word) # Transform our one-hot predictions into the final tokens vocabulary=["start", "<HTML><center><H1>Hello World!</H1></center></HTML>", "end"] for i in sentence[0]: print(vocabulary[np.argmax(i)], end=' ') 复制代码
输出
我走过的坑:
在 FloydHub 上运行代码
FloydHub 是一个深度学习训练平台,我自从开始学习深度学习时就对它有所了解,我也常用它训练和管理深度学习试验。我们能安装它并在 10 分钟内运行第一个模型,它是在云 GPU 上训练模型最好的选择。若果读者没用过 FloydHub,可以花 10 分钟左右安装并了解。
FloydHub 地址:www.floydhub.com/
复制 Repo:
https://github.com/emilwallner/Screenshot-to-code-in-Keras.git 复制代码
登录并初始化 FloydHub 命令行工具:
cd Screenshot-to-code-in-Keras floyd login floyd init s2c 复制代码
在 FloydHub 云 GPU 机器上运行 Jupyter notebook:
floyd run --gpu --env tensorflow-1.4 --data emilwallner/datasets/imagetocode/2:data --mode jupyter 复制代码
所有的 notebook 都放在 floydbub 目录下。一旦我们开始运行模型,那么在 floydhub/Helloworld/helloworld.ipynb 下可以找到第一个 Notebook。更多详情请查看本项目早期的 flags。
HTML 版本
在这个版本中,我们将关注与创建一个可扩展的神经网络模型。该版本并不能直接从随机网页预测 HTML,但它是探索动态问题不可缺少的步骤。
概览
如果我们将前面的架构扩展为以下右图展示的结构,那么它就能更高效地处理识别与转换过程。
该架构主要有两个部,即编码器与解码器。编码器是我们创建图像特征和前面标记特征(markup features)的部分。特征是网络创建原型设计和标记语言之间联系的构建块。在编码器的末尾,我们将图像特征传递给前面标记的每一个单词。随后解码器将结合原型设计特征和标记特征以创建下一个标签的特征,这一个特征可以通过全连接层预测下一个标签。
设计原型的特征
因为我们需要为每个单词插入一个截屏,这将会成为训练神经网络的瓶颈。因此我们抽取生成标记语言所需要的信息来替代直接使用图像。这些抽取的信息将通过预训练的 CNN 编码到图像特征中,且我们将使用分类层之前的层级输出以抽取特征。
我们最终得到 1536 个 8*8 的特征图,虽然我们很难直观地理解它,但神经网络能够从这些特征中抽取元素的对象和位置。
标记特征
在 Hello World 版本中,我们使用 one-hot 编码以表征标记。而在该版本中,我们将使用词嵌入表征输入并使用 one-hot 编码表示输出。我们构建每个句子的方式保持不变,但我们映射每个符号的方式将会变化。one-hot 编码将每一个词视为独立的单元,而词嵌入会将输入数据表征为一个实数列表,这些实数表示标记标签之间的关系。
上面词嵌入的维度为 8,但一般词嵌入的维度会根据词汇表的大小在 50 到 500 间变动。以上每个单词的八个数值就类似于神经网络中的权重,它们倾向于刻画单词之间的联系(Mikolov alt el., 2013)。这就是我们开始部署标记特征(markup features)的方式,而这些神经网络训练的特征会将输入数据和输出数据联系起来。
编码器
我们现在将词嵌入馈送到 LSTM 中,并期望能返回一系列的标记特征。这些标记特征随后会馈送到一个 Time Distributed 密集层,该层级可以视为有多个输入和输出的全连接层。
和嵌入与 LSTM 层相平行的还有另外一个处理过程,其中图像特征首先会展开成一个向量,然后再馈送到一个全连接层而抽取出高级特征。这些图像特征随后会与标记特征相级联而作为编码器的输出。
标记特征
如下图所示,现在我们将词嵌入投入到 LSTM 层中,所有的语句都会用零填充以获得相同的向量长度。
为了混合信号并寻找高级模式,我们运用了一个 TimeDistributed 密集层以抽取标记特征。TimeDistributed 密集层和一般的全连接层非常相似,且它有多个输入与输出。
图像特征
对于另一个平行的过程,我们需要将图像的所有像素值展开成一个向量,因此信息不会被改变,它们只会用来识别。
如上,我们会通过全连接层混合信号并抽取更高级的概念。因为我们并不只是处理一个输入值,因此使用一般的全连接层就行了。
级联图像特征和标记特征
所有的语句都被填充以创建三个标记特征。因为我们已经预处理了图像特征,所以我们能为每一个标记特征添加图像特征。
如上,在复制图像特征到对应的标记特征后,我们得到了新的图像-标记特征(image-markup features),这就是我们馈送到解码器的输入值。
解码器
现在,我们使用图像-标记特征来预测下一个标签。
在下面的案例中,我们使用三个图像-标签特征对来输出下一个标签特征。注意 LSTM 层不应该返回一个长度等于输入序列的向量,而只需要预测预测一个特征。在我们的案例中,这个特征将预测下一个标签,它包含了最后预测的信息。
最后的预测
密集层会像传统前馈网络那样工作,它将下一个标签特征中的 512 个值与最后的四个预测连接起来,即我们在词汇表所拥有的四个单词:start、hello、world 和 end。密集层最后采用的 softmax 函数会为四个类别产生一个概率分布,例如 [0.1, 0.1, 0.1, 0.7] 将预测第四个词为下一个标签。
# Load the images and preprocess them for inception-resnet images=[] all_filenames=listdir('images/') all_filenames.sort() for filename in all_filenames: images.append(img_to_array(load_img('images/'+filename, target_size=(299, 299)))) images=np.array(images, dtype=float) images=preprocess_input(images) # Run the images through inception-resnet and extract the features without the classification layer IR2=InceptionResNetV2(weights='imagenet', include_top=False) features=IR2.predict(images) # We will cap each input sequence to 100 tokens max_caption_len=100 # Initialize the function that will create our vocabulary tokenizer=Tokenizer(filters='', split=" ", lower=False) # Read a document and return a string def load_doc(filename): file=open(filename, 'r') text=file.read() file.close() return text # Load all the HTML files X=[] all_filenames=listdir('html/') all_filenames.sort() for filename in all_filenames: X.append(load_doc('html/'+filename)) # Create the vocabulary from the html files tokenizer.fit_on_texts(X) # Add +1 to leave space for empty words vocab_size=len(tokenizer.word_index) + 1 # Translate each word in text file to the matching vocabulary index sequences=tokenizer.texts_to_sequences(X) # The longest HTML file max_length=max(len(s) for s in sequences) # Intialize our final input to the model X, y, image_data=list(), list(), list() for img_no, seq in enumerate(sequences): for i in range(1, len(seq)): # Add the entire sequence to the input and only keep the next word for the output in_seq, out_seq=seq[:i], seq[i] # If the sentence is shorter than max_length, fill it up with empty words in_seq=pad_sequences([in_seq], maxlen=max_length)[0] # Map the output to one-hot encoding out_seq=to_categorical([out_seq], num_classes=vocab_size)[0] # Add and image corresponding to the HTML file image_data.append(features[img_no]) # Cut the input sentence to 100 tokens, and add it to the input data X.append(in_seq[-100:]) y.append(out_seq) X, y, image_data=np.array(X), np.array(y), np.array(image_data) # Create the encoder image_features=Input(shape=(8, 8, 1536,)) image_flat=Flatten()(image_features) image_flat=Dense(128, activation='relu')(image_flat) ir2_out=RepeatVector(max_caption_len)(image_flat) language_input=Input(shape=(max_caption_len,)) language_model=Embedding(vocab_size, 200, input_length=max_caption_len)(language_input) language_model=LSTM(256, return_sequences=True)(language_model) language_model=LSTM(256, return_sequences=True)(language_model) language_model=TimeDistributed(Dense(128, activation='relu'))(language_model) # Create the decoder decoder=concatenate([ir2_out, language_model]) decoder=LSTM(512, return_sequences=False)(decoder) decoder_output=Dense(vocab_size, activation='softmax')(decoder) # Compile the model model=Model(inputs=[image_features, language_input], outputs=decoder_output) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') # Train the neural network model.fit([image_data, X], y, batch_size=64, shuffle=False, epochs=2) # map an integer to a word def word_for_id(integer, tokenizer): for word, index in tokenizer.word_index.items(): if index==integer: return word return None # generate a description for an image def generate_desc(model, tokenizer, photo, max_length): # seed the generation process in_text='START' # iterate over the whole length of the sequence for i in range(900): # integer encode input sequence sequence=tokenizer.texts_to_sequences([in_text])[0][-100:] # pad input sequence=pad_sequences([sequence], maxlen=max_length) # predict next word yhat=model.predict([photo,sequence], verbose=0) # convert probability to integer yhat=np.argmax(yhat) # map integer to word word=word_for_id(yhat, tokenizer) # stop if we cannot map the word if word is None: break # append as input for generating the next word in_text +=' ' + word # Print the prediction print(' ' + word, end='') # stop if we predict the end of the sequence if word=='END': break return # Load and image, preprocess it for IR2, extract features and generate the HTML test_image=img_to_array(load_img('images/87.jpg', target_size=(299, 299))) test_image=np.array(test_image, dtype=float) test_image=preprocess_input(test_image) test_features=IR2.predict(np.array([test_image])) generate_desc(model, tokenizer, np.array(test_features), 100) 复制代码
输出
训练不同轮数所生成网站的地址:
我走过的坑:
Bootstrap 版本
在最终版本中,我们使用 pix2code 论文中生成 bootstrap 网站的数据集。使用 Twitter 的 Bootstrap 库(getbootstrap.com/),我们可以结合 HTML 和 CSS,降低词汇表规模。
我们将使用这一版本为之前未见过的截图生成标记。我们还深入研究它如何构建截图和标记的先验知识。
我们不在 bootstrap 标记上训练,而是使用 17 个简化 token,将其编译成 HTML 和 CSS。数据集(github.com/tonybeltram…)包括 1500 个测试截图和 250 个验证截图。平均每个截图有 65 个 token,一共有 96925 个训练样本。
我们稍微修改一下 pix2code 论文中的模型,使之预测网络组件的准确率达到 97%。
端到端方法
从预训练模型中提取特征在图像描述生成模型中效果很好。但是几次实验后,我发现 pix2code 的端到端方法效果更好。在我们的模型中,我们用轻量级卷积神经网络替换预训练图像特征。我们不使用最大池化来增加信息密度,而是增加步幅。这可以保持前端元素的位置和颜色。
存在两个核心模型:卷积神经网络(CNN)和循环神经网络(RNN)。最常用的循环神经网络是长短期记忆(LSTM)网络。我之前的文章中介绍过 CNN 教程,本文主要介绍 LSTM。
理解 LSTM 中的时间步
关于 LSTM 比较难理解的是时间步。我们的原始神经网络有两个时间步,如果你给它「Hello」,它就会预测「World」。但是它会试图预测更多时间步。下例中,输入有四个时间步,每个单词对应一个时间步。
LSTM 适合时序数据的输入,它是一种适合顺序信息的神经网络。模型展开图示如下,对于每个循环步,你需要保持同样的权重。
加权后的输入与输出特征在级联后输入到激活函数,并作为当前时间步的输出。因为我们重复利用了相同的权重,它们将从一些输入获取信息并构建序列的知识。下面是 LSTM 在每一个时间步上的简化版处理过程:
理解 LSTM 层级中的单元
每一层 LSTM 单元的总数决定了它记忆的能力,同样也对应于每一个输出特征的维度大小。LSTM 层级中的每一个单元将学习如何追踪句法的不同方面。以下是一个 LSTM 单元追踪标签行信息的可视化,它是我们用来训练 bootstrap 模型的简单标记语言。
每一个 LSTM 单元会维持一个单元状态,我们可以将单元状态视为记忆。权重和激活值可使用不同的方式修正状态值,这令 LSTM 层可以通过保留或遗忘输入信息而得到精调。除了处理当前输入信息与输出信息,LSTM 单元还需要修正记忆状态以传递到下一个时间步。
dir_name='resources/eval_light/' # Read a file and return a string def load_doc(filename): file=open(filename, 'r') text=file.read() file.close() return text def load_data(data_dir): text=[] images=[] # Load all the files and order them all_filenames=listdir(data_dir) all_filenames.sort() for filename in (all_filenames): if filename[-3:]=="npz": # Load the images already prepared in arrays image=np.load(data_dir+filename) images.append(image['features']) else: # Load the boostrap tokens and rap them in a start and end tag syntax='<START> ' + load_doc(data_dir+filename) + ' <END>' # Seperate all the words with a single space syntax=' '.join(syntax.split()) # Add a space after each comma syntax=syntax.replace(',', ' ,') text.append(syntax) images=np.array(images, dtype=float) return images, text train_features, texts=load_data(dir_name) # Initialize the function to create the vocabulary tokenizer=Tokenizer(filters='', split=" ", lower=False) # Create the vocabulary tokenizer.fit_on_texts([load_doc('bootstrap.vocab')]) # Add one spot for the empty word in the vocabulary vocab_size=len(tokenizer.word_index) + 1 # Map the input sentences into the vocabulary indexes train_sequences=tokenizer.texts_to_sequences(texts) # The longest set of boostrap tokens max_sequence=max(len(s) for s in train_sequences) # Specify how many tokens to have in each input sentence max_length=48 def preprocess_data(sequences, features): X, y, image_data=list(), list(), list() for img_no, seq in enumerate(sequences): for i in range(1, len(seq)): # Add the sentence until the current count(i) and add the current count to the output in_seq, out_seq=seq[:i], seq[i] # Pad all the input token sentences to max_sequence in_seq=pad_sequences([in_seq], maxlen=max_sequence)[0] # Turn the output into one-hot encoding out_seq=to_categorical([out_seq], num_classes=vocab_size)[0] # Add the corresponding image to the boostrap token file image_data.append(features[img_no]) # Cap the input sentence to 48 tokens and add it X.append(in_seq[-48:]) y.append(out_seq) return np.array(X), np.array(y), np.array(image_data) X, y, image_data=preprocess_data(train_sequences, train_features) #Create the encoder image_model=Sequential() image_model.add(Conv2D(16, (3, 3), padding='valid', activation='relu', input_shape=(256, 256, 3,))) image_model.add(Conv2D(16, (3,3), activation='relu', padding='same', strides=2)) image_model.add(Conv2D(32, (3,3), activation='relu', padding='same')) image_model.add(Conv2D(32, (3,3), activation='relu', padding='same', strides=2)) image_model.add(Conv2D(64, (3,3), activation='relu', padding='same')) image_model.add(Conv2D(64, (3,3), activation='relu', padding='same', strides=2)) image_model.add(Conv2D(128, (3,3), activation='relu', padding='same')) image_model.add(Flatten()) image_model.add(Dense(1024, activation='relu')) image_model.add(Dropout(0.3)) image_model.add(Dense(1024, activation='relu')) image_model.add(Dropout(0.3)) image_model.add(RepeatVector(max_length)) visual_input=Input(shape=(256, 256, 3,)) encoded_image=image_model(visual_input) language_input=Input(shape=(max_length,)) language_model=Embedding(vocab_size, 50, input_length=max_length, mask_zero=True)(language_input) language_model=LSTM(128, return_sequences=True)(language_model) language_model=LSTM(128, return_sequences=True)(language_model) #Create the decoder decoder=concatenate([encoded_image, language_model]) decoder=LSTM(512, return_sequences=True)(decoder) decoder=LSTM(512, return_sequences=False)(decoder) decoder=Dense(vocab_size, activation='softmax')(decoder) # Compile the model model=Model(inputs=[visual_input, language_input], outputs=decoder) optimizer=RMSprop(lr=0.0001, clipvalue=1.0) model.compile(loss='categorical_crossentropy', optimizer=optimizer) #Save the model for every 2nd epoch filepath="org-weights-epoch-{epoch:04d}--val_loss-{val_loss:.4f}--loss-{loss:.4f}.hdf5" checkpoint=ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_weights_only=True, period=2) callbacks_list=[checkpoint] # Train the model model.fit([image_data, X], y, batch_size=64, shuffle=False, validation_split=0.1, callbacks=callbacks_list, verbose=1, epochs=50) 复制代码
测试准确率
找到一种测量准确率的优秀方法非常棘手。比如一个词一个词地对比,如果你的预测中有一个词不对照,准确率可能就是 0。如果你把百分百对照的单词移除一个,最终的准确率可能是 99/100。
我使用的是 BLEU 分值,它在机器翻译和图像描述模型实践上都是最好的。它把句子分解成 4 个 n-gram,从 1-4 个单词的序列。在下面的预测中,「cat」应该是「code」。
为了得到最终的分值,每个的分值需要乘以 25%,(4/5) × 0.25 + (2/4) × 0.25 + (1/3) × 0.25 + (0/2) ×0.25=0.2 + 0.125 + 0.083 + 0=0.408。然后用总和乘以句子长度的惩罚函数。因为在我们的示例中,长度是正确的,所以它就直接是我们的最终得分。
你可以增加 n-gram 的数量,4 个 n-gram 的模型是最为对应人类翻译的。我建议你阅读下面的代码:
#Create a function to read a file and return its content def load_doc(filename): file=open(filename, 'r') text=file.read() file.close() return text def load_data(data_dir): text=[] images=[] files_in_folder=os.listdir(data_dir) files_in_folder.sort() for filename in tqdm(files_in_folder): #Add an image if filename[-3:]=="npz": image=np.load(data_dir+filename) images.append(image['features']) else: # Add text and wrap it in a start and end tag syntax='<START> ' + load_doc(data_dir+filename) + ' <END>' #Seperate each word with a space syntax=' '.join(syntax.split()) #Add a space between each comma syntax=syntax.replace(',', ' ,') text.append(syntax) images=np.array(images, dtype=float) return images, text #Intialize the function to create the vocabulary tokenizer=Tokenizer(filters='', split=" ", lower=False) #Create the vocabulary in a specific order tokenizer.fit_on_texts([load_doc('bootstrap.vocab')]) dir_name='../../../../eval/' train_features, texts=load_data(dir_name) #load model and weights json_file=open('../../../../model.json', 'r') loaded_model_json=json_file.read() json_file.close() loaded_model=model_from_json(loaded_model_json) # load weights into new model loaded_model.load_weights("../../../../weights.hdf5") print("Loaded model from disk") # map an integer to a word def word_for_id(integer, tokenizer): for word, index in tokenizer.word_index.items(): if index==integer: return word return None print(word_for_id(17, tokenizer)) # generate a description for an image def generate_desc(model, tokenizer, photo, max_length): photo=np.array([photo]) # seed the generation process in_text='<START> ' # iterate over the whole length of the sequence print('\nPrediction---->\n\n<START> ', end='') for i in range(150): # integer encode input sequence sequence=tokenizer.texts_to_sequences([in_text])[0] # pad input sequence=pad_sequences([sequence], maxlen=max_length) # predict next word yhat=loaded_model.predict([photo, sequence], verbose=0) # convert probability to integer yhat=argmax(yhat) # map integer to word word=word_for_id(yhat, tokenizer) # stop if we cannot map the word if word is None: break # append as input for generating the next word in_text +=word + ' ' # stop if we predict the end of the sequence print(word + ' ', end='') if word=='<END>': break return in_text max_length=48 # evaluate the skill of the model def evaluate_model(model, descriptions, photos, tokenizer, max_length): actual, predicted=list(), list() # step over the whole set for i in range(len(texts)): yhat=generate_desc(model, tokenizer, photos[i], max_length) # store actual and predicted print('\n\nReal---->\n\n' + texts[i]) actual.append([texts[i].split()]) predicted.append(yhat.split()) # calculate BLEU score bleu=corpus_bleu(actual, predicted) return bleu, actual, predicted bleu, actual, predicted=evaluate_model(loaded_model, texts, train_features, tokenizer, max_length) #Compile the tokens into HTML and css dsl_path="compiler/assets/web-dsl-mapping.json" compiler=Compiler(dsl_path) compiled_website=compiler.compile(predicted[0], 'index.html') print(compiled_website ) print(bleu) 复制代码
输出
样本输出的链接:
我走过的坑:
下一步
前端开发是深度学习应用的理想空间。数据容易生成,并且当前深度学习算法可以映射绝大部分逻辑。一个最让人激动的领域是注意力机制在 LSTM 上的应用。这不仅会提升精确度,还可以使我们可视化 CNN 在生成标记时所聚焦的地方。注意力同样是标记、可定义模板、脚本和最终端之间通信的关键。注意力层要追踪变量,使网络可以在编程语言之间保持通信。
但是在不久的将来,最大的影响将会来自合成数据的可扩展方法。接着你可以一步步添加字体、颜色和动画。目前为止,大多数进步发生在草图(sketches)方面并将其转化为模版应用。在不到两年的时间里,我们将创建一个草图,它会在一秒之内找到相应的前端。Airbnb 设计团队与 Uizard 已经创建了两个正在使用的原型。下面是一些可能的试验过程:
实验
开始
进一步实验
原文链接:blog.floydhub.com/turning-des…
本文为机器之心编译,转载请联系本公众号获得授权。
*请认真填写需求信息,我们会在24小时内与您取得联系。