整合营销服务商

电脑端+手机端+微信端=数据同步管理

免费咨询热线:

超越最新视频压缩标准H.266,字节跳动编码让视频缩小13%

器之心发布

机器之心编辑部

联合视频专家组 JVET 官网显示,字节跳动设立在美国的研发团队于今年初发起了一项视频压缩技术提案,并命名为 DAM(Deep-filtering with Adaptive Model-selection)。相比 H.266/VVC 最新标准,DAM 能够为视频编码性能带来显著提升,亮度信号 Y 可实现 10.28% 的性能增益。两个色度信号 U 和 V 的性能增益也分别达到 28.22% 和 27.97%。这是业界公开的单个智能编码工具的最佳性能增益。


视频编解码是视频应用的底层核心技术,作用是对图像进行压缩和数字编码,以尽可能小的带宽传送尽可能高质量的视频数据。H.264 是现在被广泛使用的视频编解码标准,在同等视频质量下,H.265/HEVC 标准可以让视频体积减小一半。H.265 尚未完全普及,新一代标准 H.266/VVC 比 H.265 让视频又减小一半。

这并不是视频编码技术的尽头。

今年初,字节跳动先进视频团队(AVG)向联合视频专家组 JVET 发起了一项 JVET-U0068 技术提案,可以为视频压缩的三个颜色分量(Y, U, V)分别实现约 10%、28%、28% 的性能增益,这是业界公开的单个智能编码工具的最佳性能增益。在优化压缩质量的同时,视频体积相比 H.266 最新标准至少还可以缩小 13%。就其实际效果而言,如果新技术得以应用,与现在主流的 H.264 标准相比,我们看同样质量的视频,大约只需要 22% 的带宽和存储空间。

这项技术名为 DAM(Deep-filtering with Adaptive Model-selection),它是通过深度学习技术构建减少视频压缩失真的滤波器,主干是基于残差单元堆叠的深度卷积神经网络,辅以自适应模型选择以最大程度适应特性复杂的自然视频。该技术由字节跳动 AVG 的美国加州研发团队实现,成员来自高通、英特尔、微软等巨头以及海内外多家顶级院校。

我们先从下图示例中对比 H.264 与 H.266+DAM 的视频压缩效果:

可以看到,相同压缩比条件下,H.266+DAM 编码压缩质量远远优于 H.264。

除了视频压缩质量提升之外,应用 DAM 技术可以比H.266再缩小 13% 的数据体积,以下图片来自国际标准组织的测试视频。其中,图(左)为原图,每像素 12 字节;图(中)使用 VTM11.0 压缩(qp=42),每像素 0.00216字节,峰值信噪比 27.78dB;图(右)使用 VTM11.0+DAM(qp=42),每像素 0.00184 字节,峰值信噪比 28.02dB。

对比图(中)和图(右)可以看出,应用 DAM 技术后,图(右)压缩比更高,峰值信噪比(客观质量)更好,主观质量也相对更好。

图1. 左:原图, 12bpp,中:VTM-11.0压缩,QP42,0.00216bpp,27.78dB,右:VTM-11.0+DAM,QP42, 0.00184bpp,28.02dB

技术细节

DAM 的构建方法

提案 JVET-U0068 所介绍的 DAM 是字节跳动 AVG 此前一项提案 JVET-T0088 的扩展版本。

在具体实现上,为了减轻深度网络的训练难度,DAM 算法利用残差单元作为基本模块,并多次堆叠来构建最终网络。所谓残差单元是指通过引入跳层连接,允许网络把注意力放在变化的残差上。为了处理不同类型的内容,新技术针对不同类型的 slice 和质量级别训练不同网络。此外,还引入了一些新特性来提高编码性能。

图 1:(a)是卷积神经网络滤波器的架构,M 代表特征图的数量,N 代表特征图的空间分辨率;(b)是(a)中残差块的结构。

DAM 滤波方法的主干如上图 1 所示,为了增加感受野,降低复杂度,此方法包含一个步幅为 2 的卷积层,该层将特征图的空间分辨率在水平方向和垂直方向都降低到输入大小的一半,这一层输出的特征图会经过若干顺序堆叠的残差单元。最后一个卷积层以最后一个残差单元的特征图作为输入,输出 4 个子特征图。最后,shuffle 层会生成空间分辨率与输入相同的滤波图像。

与此架构相关的其他细节如下:

  • 对于所有卷积层,使用 3x3 的卷积核。对于内部卷积层,特征图数量设置为 128。对于激活函数,使用 PReLU;
  • 针对不同 slice 类型训练不同的模型;
  • 当为 intra slice 训练卷积神经网络滤波器时,预测和分块信息也被输入网络。

新特性:自适应模型选择

在 JVET-T0088 的卷积神经网络结构基础上,JVET-U0068 引入了以下几种新特性:

  • 首先,每个 slice 或 CTU 单元可以决定是否使用基于卷积神经网络的滤波器;
  • 其次,当某个 slice 或者 CTU 单元确定使用基于卷积神经网络的滤波器时,可以进一步确定使用三个候选模型中的哪个模型。为此目的,使用 {17,22,27,32,37,42} 中的 QP 数值训练不同模型。将编码当前 slice 或 CTU 的 QP 记作 q,那么候选模型由针对 {q,q-5,q-10} 训练的三个模型构成。选择过程基于率失真代价函数,然后将相关模式表征信息写入码流;
  • 第三,基于卷积神经网络的滤波器在所有层都被启用;
  • 最后,现有滤波器中的去块滤波和 SAO 被关掉,而 ALF(和 CCALF)则被置于基于卷积神经网络滤波器后面。

在线推断及训练

推断过程中使用 PyTorch 在 VTM 中执行 DAM 深度学习的在线推断,下表 1 是根据 JVET 建议给出的网络信息:

表 1。

训练过程中以 PyTorch 为训练平台,采用 DIV2K 和 BVI-DVC 数据集,分别训练针对 intra slice 和 inter slice 的卷积神经网络滤波器,并且训练不同的模型以适应不同的 QP 点,训练阶段的网络信息根据 JVET 建议列于下表 2 中。

注意,当训练 inter slice 滤波器时,预测信息也被用作输入,而在 JVET-T0088 中,它仅用于 intra slice。

表 2。

下图 2 给出了训练集和验证集损失函数的一个示例。

图 2。

实验结果:三个颜色分量(亮度 Y 和色度 Cb、Cr)性能增益显著

考虑到 VTM-9.0 和 VTM-10.0 之间的微小差异,并根据 JVET 定义的常规测试条件,在 VTM-9.0 上测试了字节跳动 AVG 的 DAM 技术提案,测试结果如下表 3 和表 4 所示。

结果显示,在 RA 构型下,Y、Cb 和 Cr 的 BD-rate 节省分别为 10.28%、28.22% 和 27.97%;在 AI 配置下,对 Y、Cb 和 Cr 分别可带来 8.33%、23.11% 和 23.55% 的 BD-rate 节省。

表 3:AVG 提案在 VTM9.0(RA)上的性能表现。

表 4:AVG 提案在 VTM9.0(AI)上的性能表现。

总结

实测证明,字节跳动 AVG 的这项视频编码技术创新,可以让视频的数据体积相比 H.266 最新国际标准再缩小 13%。对视频服务商来说,存储和带宽成本将显著降低;对用户来说,在网速较慢的情况下也可以流畅观看高清视频。

但正如前文所述,早在 2013年正式通过的 H.265,如今还没有完全普及。一方面,高昂的专利授权费用导致生产硬件设备和生产内容的厂商无法承担,用户也只能买并不支持 H.265 标准的设备;另一方面,H.265 的专利收费很复杂,想要使用 H.265 得分别多次缴专利费。因此,目前最常见的还是 18 年前的 H.264 标准。

尽管 H.266 新一代标准的推广还有很长的路要走,字节跳动 AVG 的技术探索并不会停止,其研究成果也会通过自主研发的 BVC 编码器投入应用,为抖音、西瓜视频、等 App 的视频类内容处理,以及云计算、云游戏等基础架构领域创造更高清画质、更流畅播放的视频体验。

ue.js 的核心是一个响应的数据绑定系统,它允许我们在普通 HTML 模板中使用特殊的语法将 DOM “绑定”到底层数据。被绑定的DOM 将与数据保持同步,每当数据有改动,相应的DOM视图也会更新。基于这种特性,通过vue.js动态绑定class就变得非常简单。

思路:以某一页面样式需要单独适配iphonex为例

方式一.对象的形式(第一个参数 类名, 第二个参数:boolean值) :class="{'footer':isIphoneX}"

//某一页面适配iPhone X
<div class="bottom" :class="{'footer':isIphoneX}">
</div>
 data () {
 return {
 isIphoneX:false
 }
 },
 mounted () {
 if(window.screen.width==375&&window.screen.height==812){
 this.isIphoneX = true
 }

渲染后的

渲染后的HTML:
<div class="bottom footer">
</div>

如图:

image

优点:以对象的形式可以写多个,用逗号分开 <div :class="{'p1' : false, 'p': true}"></div>

方式二.三元表达式(放在数组中,类名要用引号) :class="[isIphoneX ? 'bottom' : 'footer']"

//某一页面适配iPhone X
<div :class="[isIphoneX ? 'bottom' : 'footer']">
</div>

渲染后:

渲染后的HTML:
<div class="footer">
</div>

image.gif

如图:

image

**方式三.动态数组里的变量 **:class="[isTrue, isFalse]"

//某一页面适配iPhone X
<div :class="[{'footer':isIphoneX} , 'bottom']">
</div>

渲染后和方法一是一样的。vue数据和class都符合双向绑定的规则!

omcat是什么?

Tomcat是开源的 Java Web 应用服务器,实现了 Java EE 的部分技术规范,比如 Java Servlet、Java Server Page、JSTL、Java WebSocket。Java EE 是 Sun 公 司为企业级应用推出的标准平台,定义了一系列用于企业级开发的技术规范。除了上述的之外,还有 EJB、Java Mail、JPA、JTA、JMS 等,而这些都依赖具体容器的实现。


上图对比了 Java EE 容器的实现情况,Tomcat 和 Jetty 都只提供了 Java Web 容器必需的 Servlet 和 JSP 规范,开发者要想实现其他的功能,需要自己依赖其他开源实现。

Glassfish 是由 sun 公司推出,Java EE 最新规范出来之后,首先会在 Glassfish 上进行实现,所以是研究 Java EE 最新技术的首选。

最常见的情况是使用 Tomcat 作为 Java Web 服务器,使用 Spring 提供的开箱即用的强大功能,并依赖其他开源库来完成负责的业务功能实现。

Servlet容器

Tomcat 组成

如下图所示,主要有 Container 和 Connector 以及相关组件构成。


  • Server:指的就是整个 Tomcat 服 务器,包含多组服务,负责管理和 启动各个 Service,同时监听 8005 端口发过来的 shutdown 命令,用 于关闭整个容器 ;
  • Service:Tomcat 封装的、对外提 供完整的、基于组件的 web 服务, 包含 Connectors、Container 两个 核心组件,以及多个功能组件,各 个 Service 之间是独立的,但是共享 同一 JVM 的资源 ;
  • Connector:Tomcat 与外部世界的连接器,监听固定端口接收外部请求,传递给 Container,并 将 Container 处理的结果返回给外部
  • Container:Catalina,Servlet 容器,内部有多层容器组成,用于管理 Servlet 生命周期,调用 servlet 相关方法
  • Loader:封装了 Java ClassLoader,用于 Container 加载类文件;Realm:Tomcat 中为 web 应用程序提供访问认证和角色管理的机制;
  • JMX:Java SE 中定义技术规范,是一个为应用程序、设备、系统等植入管理功能的框架,通过 JMX 可以远程监控 Tomcat 的运行状态
  • Jasper:Tomcat 的 Jsp 解析引擎,用于将 Jsp 转换成 Java 文件,并编译成 class 文件。Session:负责管理和创建 session,以及 Session 的持久化(可自定义),支持 session 的集群。
  • Pipeline:在容器中充当管道的作用,管道中可以设置各种 valve(阀门),请求和响应在经由管 道中各个阀门处理,提供了一种灵活可配置的处理请求和响应的机制。
  • Naming:命名服务,JNDI, Java 命名和目录接口,是一组在 Java 应用中访问命名和目录服务的 API。命名服务将名称和对象联系起来,使得我们可以用名称访问对象,目录服务也是一种命名 服务,对象不但有名称,还有属性。Tomcat 中可以使用 JNDI 定义数据源、配置信息,用于开发 与部署的分离。


Container组成


  • Engine:Servlet 的顶层容器,包含一 个或多个 Host 子容器;
  • Host:虚拟主机,负责 web 应用的部 署和 Context 的创建;
  • Context:Web 应用上下文,包含多个 Wrapper,负责 web 配置的解析、管 理所有的 Web 资源;
  • Wrapper:最底层的容器,是对 Servlet 的封装,负责 Servlet 实例的创 建、执行和销毁。


生命周期管理

Tomcat 为了方便管理组件和容器的生命周期,定义了从创建、启动、到停止、销毁共 12 种状态

tomcat 生命周期管理了内部状态变化的规则控制,组件和容器只需实现相应的生命周期方法,即可完成各生命周期内的操作(initInternal、startInternal、stopInternal、 destroyInternal);

比如执行初始化操作时,会判断当前状态是否 New,如果不是则抛出生命周期异常;是的话则设置当前状态为 Initializing,并执行 initInternal 方法,由子类实现,方法执行成功则设置当前状态为 Initialized,执行失败则设置为 Failed 状态;

Tomcat 的生命周期管理引入了事件机制,在组件或容器的生命周期状态发生变化时会通知事件监听器,监听器通过判断事件的类型来进行相应的操作。事件监听器的添加可以在 server.xml 文件中进行配置;

Tomcat 各类容器的配置过程是通过添加 listener 的方式来进行的,从而达到配置逻辑与容器的解耦。如 EngineConfig、HostConfig、ContextConfig。

  • EngineConfig:主要打印启动和停止日志
  • HostConfig:主要处理部署应用,解析应用 META-INF/context.xml 并创建应用
  • Context ContextConfig:主要解析并合并 web.xml,扫描应用的各类 web 资源 (filter、servlet、listener)


Tomcat 的启动过程

启动从 Tomcat 提供的 start.sh 脚本开始,shell 脚本会调用 Bootstrap 的 main 方法,实际调用了 Catalina 相应的 load、start 方法。

load 方法会通过 Digester 进行 config/server.xml 的解析,在解析的过程中会根据 xml 中的关系 和配置信息来创建容器,并设置相关的属性。

接着 Catalina 会调用 StandardServer 的 init 和 start 方法进行容器的初始化和启动。

按照 xml 的配置关系,server 的子元素是 service,service 的子元素是顶层容器 Engine,每层容器都持有自己的子容器,而这些元素都实现了生命周期管理的各个方法,因此就很容易的完成整个容器的启动、关闭等生命周期的管理。

StandardServer 完成 init 和 start 方法调用后,会一直监听来自 8005 端口(可配置)

如果接收 到 shutdown 命令,则会退出循环监听,执行后续的 stop 和 destroy 方法,完成 Tomcat 容器的关闭。

同时也会调用 JVM 的 Runtime.getRuntime()﴿.addShutdownHook 方法,在虚拟机意外退出的时候来关闭容器。

所有容器都是继承自 ContainerBase,基类中封装了容器中的重复工作,负责启动容器相关的组件 Loader、Logger、Manager、Cluster、Pipeline,启动子容器(线程池并发启动子容器,通过线程池 submit 多个线程,调用后返回 Future 对象,线程内部启动子容器,接着调用 Future 对象 的 get 方法来等待执行结果)。

List<future> results = new ArrayList<future>();

for (int i = 0; i < children.length; i++) {

results.add(startStopExecutor.submit(new StartChild(children[i])));

}

boolean fail = false;

for (Futureresult :results) {

try {

result.get();

} catch (Exception e) {

log.error(sm.getString("containerBase.threadedStartFailed"), e);

fail = true;

}

}

Web 应用的部署方式

注:catalina.home:安装目录;catalina.base:工作目录;默认值 user.dir

  • Server.xml 配置 Host 元素,指定 appBase 属性,默认$catalina.base/webapps/
  • Server.xml 配置 Context 元素,指定 docBase,元素,指定 web 应用的路径
  • 自定义配置:在$catalina.base/EngineName/HostName/XXX.xml 配置 Context 元素

HostConfig 监听了 StandardHost 容器的事件,在 start 方法中解析上述配置文件:

  • 扫描 appbase 路径下的所有文件夹和 war 包,解析各个应用的 META-INF/context.xml,并 创建 StandardContext,并将 Context 加入到 Host 的子容器中。
  • 解析$catalina.base/EngineName/HostName/下的所有 Context 配置,找到相应 web 应 用的位置,解析各个应用的 META-INF/context.xml,并创建 StandardContext,并将 Context 加入到 Host 的子容器中。


注:

  • HostConfig 并没有实际解析 Context.xml,而是在 ContextConfig 中进行的。
  • HostConfig 中会定期检查 watched 资源文件(context.xml 配置文件)

ContextConfig 解析 context.xml 顺序:

  • 先解析全局的配置 config/context.xml
  • 然后解析 Host 的默认配置 EngineName/HostName/context.xml.default
  • 最后解析应用的 META-INF/context.xml

ContextConfig 解析 web.xml 顺序:

  • 先解析全局的配置 config/web.xml
  • 然后解析 Host 的默认配置 EngineName/HostName/web.xml.default 接着解析应用的 MEB-INF/web.xml
  • 扫描应用 WEB-INF/lib/下的 jar 文件,解析其中的 META-INF/web-fragment.xml 最后合并 xml 封装成 WebXml,并设置 Context


注:

  • 扫描 web 应用和 jar 中的注解(Filter、Listener、Servlet)就是上述步骤中进行的。
  • 容器的定期执行:backgroundProcess,由 ContainerBase 来实现的,并且只有在顶层容器 中才会开启线程。(backgroundProcessorDelay=10 标志位来控制)


Servlet 生命周期


Servlet 是用 Java 编写的服务器端程序,其主要功能在于交互式地浏览和修改数据,生成动态 Web 内容。

  1. 请求到达 server 端,server 根据 url 映射到相应的 Servlet
  2. 判断 Servlet 实例是否存在,不存在则加载和实例化 Servlet 并调用 init 方法
  3. Server 分别创建 Request 和 Response 对象,调用 Servlet 实例的 service 方法(service 方法 内部会根据 http 请求方法类型调用相应的 doXXX 方法)
  4. doXXX 方法内为业务逻辑实现,从 Request 对象获取请求参数,处理完毕之后将结果通过 response 对象返回给调用方
  5. 当 Server 不再需要 Servlet 时(一般当 Server 关闭时),Server 调用 Servlet 的 destroy() 方 法。


load on startup

当值为 0 或者大于 0 时,表示容器在应用启动时就加载这个 servlet; 当是一个负数时或者没有指定时,则指示容器在该 servlet 被选择时才加载; 正数的值越小,启动该 servlet 的优先级越高;

single thread model

每次访问 servlet,新建 servlet 实体对象,但并不能保证线程安全,同时 tomcat 会限制 servlet 的实例数目

最佳实践:不要使用该模型,servlet 中不要有全局变量

请求处理过程


  1. 根据 server.xml 配置的指定的 connector 以及端口监听 http、或者 ajp 请求
  2. 请求到来时建立连接,解析请求参数,创建 Request 和 Response 对象,调用顶层容器 pipeline 的 invoke 方法
  3. 容器之间层层调用,最终调用业务 servlet 的 service 方法
  4. Connector 将 response 流中的数据写到 socket 中

Pipeline 与 Valve

Pipeline 可以理解为现实中的管道,Valve 为管道中的阀门,Request 和 Response 对象在管道中 经过各个阀门的处理和控制。

每个容器的管道中都有一个必不可少的 basic valve,其他的都是可选的,basic valve 在管道中最 后调用,同时负责调用子容器的第一个 valve。

Valve 中主要的三个方法:setNext、getNext、invoke;valve 之间的关系是单向链式结构,本身 invoke 方法中会调用下一个 valve 的 invoke 方法。

各层容器对应的 basic valve 分别是 StandardEngineValve、StandardHostValve、 StandardContextValve、StandardWrapperValve。

JSP引擎

JSP 生命周期

  • 编译阶段:servlet 容器编译 servlet 源文
  • 件,生成 servlet 类
  • 初始化阶段:加载与 JSP 对应的 servlet 类, 创建其实例,并调用它的初始化方法
  • 执行阶段:调用与 JSP 对应的 servlet 实例的 服务方法
  • 销毁阶段:调用与 JSP 对应的 servlet 实例的 销毁方法,然后销毁 servlet 实例


JSP元素

代码片段:<%>

JSP声明:<%! ...="">

JSP表达式:<%=>

JSP注释:<%-->

JSP指令:<%@ directive="" attribute="“value”">

JSP行为:

HTML元素:html/head/body/div/p/…

JSP隐式对象:request、response、out、session、application、config、pageContext、page、Exception

JSP 元素说明

  • 代码片段:包含任意量的 Java 语句、变量、方法或表达式;
  • JSP 声明:一个声明语句可以声明一个或多个变量、方法,供后面的 Java 代码使用;
  • JSP 表达式:输出 Java 表达式的值,String 形式;
  • JSP 注释:为代码作注释以及将某段代码注释掉
  • JSP 指令:用来设置与整个 JSP 页面相关的属性
  • <%@ page="" ...="">定义页面的依赖属性,比如 language、contentType、errorPage、 isErrorPage、import、isThreadSafe、session 等等
  • <%@ include="" ...="">包含其他的 JSP 文件、HTML 文件或文本文件,是该 JSP 文件的一部分,会被同时编译执行
  • <%@ taglib="" ...="">引入标签库的定义,可以是自定义标签

  • JSP 行为:jsp:include、jsp:useBean、jsp:setProperty、jsp:getProperty、jsp:forward

Jsp 解析过程

  • 代码片段:在_jspService()方法内直接输出
  • JSP 声明: 在 servlet 类中进行输出
  • JSP 表达式:在_jspService()方法内直接输出
  • JSP 注释:直接忽略,不输出
  • JSP 指令:根据不同指令进行区分,include:对引入的文件进行解析;page 相关的属性会做为 JSP 的属性,影响的是解析和请求处理时的行为
  • JSP 行为:不同的行为有不同的处理方式,jsp:useBean 为例,会从 pageContext 根据 scope 的 类别获取 bean 对象,如果没有会创建 bean,同时存到相应 scope 的 pageContext 中
  • HTML:在_jspService()方法内直接输出
  • JSP 隐式对象:在_jspService()方法会进行声明,只能在方法中使用;

Connector

Http:HTTP 是超文本传输协议,是客户端浏览器或其他程序与 Web 服务器之间的应用层通信协 议

AJP:Apache JServ 协议(AJP)是一种二进制协议,专门代理从 Web 服务器到位于后端的应用 程序服务器的入站请求

阻塞 IO

非阻塞 IO

IO多路复用

阻塞与非阻塞的区别在于进行读操作和写操作的系统调用时,如果此时内核态没有数据可读或者没有缓冲空间可写时,是否阻塞。

IO多路复用的好处在于可同时监听多个socket的可读和可写事件,这样就能使得应用可以同时监听多个socket,释放了应用线程资源。

Tomcat各类Connector对比


Connector的实现模式有三种,分别是BIO、NIO、APR,可以在server.xml中指定。

  • JIO:用java.io编写的TCP模块,阻塞IO
  • NIO:用java.nio编写的TCP模块,非阻塞IO,(IO多路复用)
  • APR:全称Apache Portable Runtime,使用JNI的方式来进行读取文件以及进行网络传输


Apache Portable Runtime是一个高度可移植的库,它是Apache HTTP Server 2.x的核心。

APR具有许多用途,包括访问高级IO功能(如sendfile,epoll和OpenSSL),操作系统级功能(随机数生成,系统状态等)和本地进程处理(共享内存,NT管道和Unix套接字)

表格中字段含义说明:

  • Support Polling:是否支持基于IO多路复用的socket事件轮询
  • Polling Size:轮询的最大连接数
  • Wait for next Request:在等待下一个请求时,处理线程是否释放,BIO是没有释放的,所以在keep-alive=true的情况下处理的并发连接数有限
  • Read Request Headers:由于request header数据较少,可以由容器提前解析完毕,不需要阻塞
  • Read Request Body:读取request body的数据是应用业务逻辑的事情,同时Servlet的限制,是需要阻塞读取的
  • Write Response:跟读取request body的逻辑类似,同样需要阻塞写


NIO处理相关类

Acceptor线程负责接收连接,调用accept方法阻塞接收建立的连接,并对socket进行封装成PollerEvent,指定注册的事件为op_read,并放入到EventQueue队列中,PollerEvent的run方法逻辑的是将Selector注册到socket的指定事件;

Poller线程从EventQueue获取PollerEvent,并执行PollerEvent的run方法,调用Selector的select方法,如果有可读的Socket则创建Http11NioProcessor,放入到线程池中执行

CoyoteAdapter是Connector到Container的适配器,Http11NioProcessor调用其提供的service方法,内部创建Request和Response对象,并调用最顶层容器的Pipeline中的第一个Valve的invoke方法

Mapper主要处理http url 到servlet的映射规则的解析,对外提供map方法

NIO Connector主要参数

Comet

Comet是一种用于web的推送技术,能使服务器实时地将更新的信息传送到客户端,而无须客户端发出请求

在WebSocket出来之前,如果不适用comet,只能通过浏览器端轮询Server来模拟实现服务器端推送。

Comet支持servlet异步处理IO,当连接上数据可读时触发事件,并异步写数据(阻塞)


Tomcat要实现Comet,只需继承HttpServlet同时,实现CometProcessor接口

  • Begin:新的请求连接接入调用,可进行与Request和Response相关的对象初始化操作,并保存response对象,用于后续写入数据
  • Read:请求连接有数据可读时调用
  • End:当数据可用时,如果读取到文件结束或者response被关闭时则被调用
  • Error:在连接上发生异常时调用,数据读取异常、连接断开、处理异常、socket超时

Note:

  • Read:在post请求有数据,但在begin事件中没有处理,则会调用read,如果read没有读取数据,在会触发Error回调,关闭socket
  • End:当socket超时,并且response被关闭时也会调用;server被关闭时调用
  • Error:除了socket超时不会关闭socket,其他都会关闭socket
  • End和Error时间触发时应关闭当前comet会话,即调用CometEvent的close方法
  • Note:在事件触发时要做好线程安全的操作


异步Servlet

传统流程:

  • 首先,Servlet 接收到请求之后,request数据解析;
  • 接着,调用业务接口的某些方法,以完成业务处理;
  • 最后,根据处理的结果提交响应,Servlet 线程结束


异步处理流程:

  • 客户端发送一个请求
  • Servlet容器分配一个线程来处理容器中的一个servlet
  • servlet调用request.startAsync(),保存AsyncContext, 然后返回
  • 任何方式存在的容器线程都将退出,但是response仍然保持开放
  • 业务线程使用保存的AsyncContext来完成响应(线程池)
  • 客户端收到响应


Servlet 线程将请求转交给一个异步线程来执行业务处理,线程本身返回至容器,此时 Servlet 还没有生成响应数据,异步线程处理完业务以后,可以直接生成响应数据(异步线程拥有 ServletRequest 和 ServletResponse 对象的引用)

为什么web应用中支持异步?

推出异步,主要是针对那些比较耗时的请求:比如一次缓慢的数据库查询,一次外部REST API调用, 或者是其他一些I/O密集型操作。这种耗时的请求会很快的耗光Servlet容器的线程池,继而影响可扩展性。

Note:从客户端的角度来看,request仍然像任何其他的HTTP的request-response交互一样,只是耗费了更长的时间而已

异步事件监听

  • onStartAsync:Request调用startAsync方法时触发
  • onComplete:syncContext调用complete方法时触发
  • onError:处理请求的过程出现异常时触发
  • onTimeout:socket超时触发


Note :

onError/ onTimeout触发后,会紧接着回调onComplete

onComplete 执行后,就不可再操作request和response