整合营销服务商

电脑端+手机端+微信端=数据同步管理

免费咨询热线:

「央视新闻」战疫情特别报道-天津瞄准企业困难出台政策

「央视新闻」战疫情特别报道:天津瞄准企业困难出台政策 促经济发展

制以下链接到浏览器中观看


http://app.cctv.com/special/cbox/detail/index.html?guid=602bcae31c6b44c39e7a4bdf67c12688&vsid=VSET100451509591&from=groupmessage#0

IA技术与DDA技术在蛋白质组学中的差异

1.1: DDA技术

数据依赖型采集(DDA)是一种传统的蛋白质组学质谱分析方法。在DDA中,在串联质谱的第二阶段,选择少量肽段进行碎裂,并且这些肽段是在质荷比(m/z)信号强度的狭窄范围内选择[1]。


1.2: DIA技术

数据无关型采集(DIA)技术是另一种蛋白质组学质谱分析方法。DIA技术将质谱仪的整个全扫描范围分为几个窗口,然后同时碎裂每个窗口内的所有肽前体,生成全面的MS2谱[2][3]。


1.3: 差异与优势

DIA技术相对于DDA技术具有以下优势:


DIA能够提供更全面的蛋白质组覆盖,因为它可以检测和定量样品中的所有肽段,无论其丰度或m/z值如何[4]。

DIA技术类似于多反应监测(MRM)或并行反应监测(PRM),能够实现可重复的定量[4]。

DDA技术更适用于发现型蛋白质组学,而DIA技术更适用于定量目的,可以识别样品中尽可能多的蛋白质,而不仅仅是对其进行定量[1]。

DIA技术在乙酰化修饰蛋白质组学中的应用

2.1: 乙酰化修饰

乙酰化是一种常见的蛋白质翻译后修饰,发生在蛋白质的赖氨酸残基上。


2.2: DIA技术在乙酰化修饰蛋白质组学中的作用

DIA技术在乙酰化修饰蛋白质组学中的应用主要包括:


DIA能够检测和定量样品中的所有乙酰化肽段,无论其丰度或m/z值如何,从而提高定量的准确性[5]。

DIA技术能够提供更全面的蛋白质组覆盖,有助于鉴定新的乙酰化位点并理解乙酰化的功能意义[5]。

DIA技术能够减少对修饰肽段先验知识的需求,成为发现型蛋白质组学的有用工具[5]。

DIA技术如何提高乙酰化修饰定量的准确性

3.1: 蛋白质组覆盖的提高

DIA技术通过提供更全面的蛋白质组覆盖来提高乙酰化修饰定量的准确性。它可以检测和定量样品中的所有乙酰化肽段,无论其丰度或m/z值如何[4][5]。


3.2: 减少偏差的发生

DIA技术的应用可以减少其他方法(如DDA)可能存在的对高丰度肽段的偏向[1]。这样可以避免在定量过程中的偏差。


3.3: 发现型蛋白质组学的工具

DIA技术能够减少对修饰肽段先验知识的需求,使其成为发现型蛋白质组学的有用工具[5]。


结论

DIA技术在乙酰化修饰蛋白质组学中具有巨大的潜力,通过提供更全面的蛋白质组覆盖和准确的定量,有助于提高对乙酰化及其在生物系统中功能意义的理解。



Citations:

[1] Hu A, Noble WS, Wolf-Yadlin A. Technical advances in proteomics: new developments in data-independent acquisition. F1000Res. 2016;5(F1000 Faculty Rev):419. doi: 10.12688/f1000research.7042.1. https://f1000research.com/articles/5-419

[2] Kawashima Y, Watanabe E, Umeyama T, et al. Optimization of data-independent acquisition mass spectrometry for deep and highly sensitive proteomic analysis. Int. J. Mol. Sci. 2019;20(23):E5932. doi: 10.3390/ijms20235932.
https://www.mdpi.com/1422-0067/20/23/5932

[3] Yuefan Wang, Optimized data-independent acquisition approach for proteomic analysis at single-cell level Clinical Proteomics volume 19, Article number: 24 (2022) doi: 10.1186/s12014-022-09359-9
https://clinicalproteomicsjournal.biomedcentral.com/articles/10.1186/s12014-022-09359-9

[4] Hu A, Noble WS, Wolf-Yadlin A. Technical advances in proteomics: new developments in data-independent acquisition. F1000Res. 2016 Mar 31;5:F1000 Faculty Rev-419. doi: 10.12688/f1000research.7042.1.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821292/

[5] Koopmans F, Ho JTC, Smit AB, Li KW. Comparative Analyses of Data Independent Acquisition Mass Spectrometric Approaches: DIA, WiSIM-DIA, and Untargeted DIA. Proteomics. 2018 Jan;18(1):1700304. doi: 10.1002/pmic.201700304. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5817406/










--------------------
英文原稿

## How does DIA technology differ from DDA technology in proteomics?


Data-dependent acquisition (DDA) and data-independent acquisition (DIA) are two approaches used in proteomics for mass spectrometry analysis. DDA is a traditional method that selects a few peptides for fragmentation during the second stage of tandem MS, and these peptides are chosen within a narrow range of mass-to-charge (m/z) signal intensity[1]. In contrast, DIA technology divides the entire full scan range of the mass spectrometer into several windows, and all the peptide precursors within each window are fragmented simultaneously to produce comprehensive MS2 spectra[2][3]. DIA can provide more comprehensive coverage of the proteome, as it can detect and quantify all peptides in a sample, regardless of their abundance or m/z values[4]. DIA also allows for reproducible quantification, similar to multiple reaction monitoring (MRM) or parallel reaction monitoring (PRM) [4]. In contrast, DDA is better suited for discovery proteomics, where the goal is to identify as many proteins as possible, rather than quantifying them[1].


## Application of DIA (Data-independent acquisition) in acetylated modified proteomics?


Acetylation is a common post-translational modification that occurs on lysine residues in proteins. DIA technology has been applied to acetylated modified proteomics to improve the accuracy of quantification. DIA can detect and quantify all acetylated peptides in a sample, regardless of their abundance or m/z values, which is important for accurate quantification of modified peptides[5]. DIA can also provide more comprehensive coverage of the proteome, which is important for identifying novel acetylation sites and understanding the functional significance of acetylation[5]. In addition, DIA can reduce the need for prior knowledge of the modified peptides, making it a useful tool for discovery proteomics[5].


## How DIA technology improves accuracy in acetylation modification quantification?


DIA technology improves accuracy in acetylation modification quantification by providing more comprehensive coverage of the proteome and detecting and quantifying all acetylated peptides in a sample, regardless of their abundance or m/z values[4][5]. This is important for accurate quantification of modified peptides, as it reduces the bias towards highly abundant peptides that can occur with other methods, such as DDA[1]. In addition, DIA can reduce the need for prior knowledge of the modified peptides, making it a useful tool for discovery proteomics[5]. Overall, DIA technology has the potential to improve our understanding of acetylation and its functional significance in biological systems.


Citations:

[1] https://www.technologynetworks.com/proteomics/lists/data-dependent-vs-data-independent-proteomic-analysis-331712

[2] https://www.creative-proteomics.com/ngpro/pct-dia-services.html

[3] https://clinicalproteomicsjournal.biomedcentral.com/articles/10.1186/s12014-022-09359-9

[4] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821292/

[5] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5817406/

IA技术与DDA技术在蛋白质组学中的差异

1.1: DDA技术

数据依赖型采集(DDA)是一种传统的蛋白质组学质谱分析方法。在DDA中,在串联质谱的第二阶段,选择少量肽段进行碎裂,并且这些肽段是在质荷比(m/z)信号强度的狭窄范围内选择[1]。


1.2: DIA技术

数据无关型采集(DIA)技术是另一种蛋白质组学质谱分析方法。DIA技术将质谱仪的整个全扫描范围分为几个窗口,然后同时碎裂每个窗口内的所有肽前体,生成全面的MS2谱[2][3]。


1.3: 差异与优势

DIA技术相对于DDA技术具有以下优势:


DIA能够提供更全面的蛋白质组覆盖,因为它可以检测和定量样品中的所有肽段,无论其丰度或m/z值如何[4]。

DIA技术类似于多反应监测(MRM)或并行反应监测(PRM),能够实现可重复的定量[4]。

DDA技术更适用于发现型蛋白质组学,而DIA技术更适用于定量目的,可以识别样品中尽可能多的蛋白质,而不仅仅是对其进行定量[1]。

DIA技术在乙酰化修饰蛋白质组学中的应用

2.1: 乙酰化修饰

乙酰化是一种常见的蛋白质翻译后修饰,发生在蛋白质的赖氨酸残基上。


2.2: DIA技术在乙酰化修饰蛋白质组学中的作用

DIA技术在乙酰化修饰蛋白质组学中的应用主要包括:


DIA能够检测和定量样品中的所有乙酰化肽段,无论其丰度或m/z值如何,从而提高定量的准确性[5]。

DIA技术能够提供更全面的蛋白质组覆盖,有助于鉴定新的乙酰化位点并理解乙酰化的功能意义[5]。

DIA技术能够减少对修饰肽段先验知识的需求,成为发现型蛋白质组学的有用工具[5]。

DIA技术如何提高乙酰化修饰定量的准确性

3.1: 蛋白质组覆盖的提高

DIA技术通过提供更全面的蛋白质组覆盖来提高乙酰化修饰定量的准确性。它可以检测和定量样品中的所有乙酰化肽段,无论其丰度或m/z值如何[4][5]。


3.2: 减少偏差的发生

DIA技术的应用可以减少其他方法(如DDA)可能存在的对高丰度肽段的偏向[1]。这样可以避免在定量过程中的偏差。


3.3: 发现型蛋白质组学的工具

DIA技术能够减少对修饰肽段先验知识的需求,使其成为发现型蛋白质组学的有用工具[5]。


结论

DIA技术在乙酰化修饰蛋白质组学中具有巨大的潜力,通过提供更全面的蛋白质组覆盖和准确的定量,有助于提高对乙酰化及其在生物系统中功能意义的理解。



Citations:

[1] Hu A, Noble WS, Wolf-Yadlin A. Technical advances in proteomics: new developments in data-independent acquisition. F1000Res. 2016;5(F1000 Faculty Rev):419. doi: 10.12688/f1000research.7042.1. https://f1000research.com/articles/5-419

[2] Kawashima Y, Watanabe E, Umeyama T, et al. Optimization of data-independent acquisition mass spectrometry for deep and highly sensitive proteomic analysis. Int. J. Mol. Sci. 2019;20(23):E5932. doi: 10.3390/ijms20235932.
https://www.mdpi.com/1422-0067/20/23/5932

[3] Yuefan Wang, Optimized data-independent acquisition approach for proteomic analysis at single-cell level Clinical Proteomics volume 19, Article number: 24 (2022) doi: 10.1186/s12014-022-09359-9
https://clinicalproteomicsjournal.biomedcentral.com/articles/10.1186/s12014-022-09359-9

[4] Hu A, Noble WS, Wolf-Yadlin A. Technical advances in proteomics: new developments in data-independent acquisition. F1000Res. 2016 Mar 31;5:F1000 Faculty Rev-419. doi: 10.12688/f1000research.7042.1.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821292/

[5] Koopmans F, Ho JTC, Smit AB, Li KW. Comparative Analyses of Data Independent Acquisition Mass Spectrometric Approaches: DIA, WiSIM-DIA, and Untargeted DIA. Proteomics. 2018 Jan;18(1):1700304. doi: 10.1002/pmic.201700304. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5817406/










--------------------
英文原稿

## How does DIA technology differ from DDA technology in proteomics?


Data-dependent acquisition (DDA) and data-independent acquisition (DIA) are two approaches used in proteomics for mass spectrometry analysis. DDA is a traditional method that selects a few peptides for fragmentation during the second stage of tandem MS, and these peptides are chosen within a narrow range of mass-to-charge (m/z) signal intensity[1]. In contrast, DIA technology divides the entire full scan range of the mass spectrometer into several windows, and all the peptide precursors within each window are fragmented simultaneously to produce comprehensive MS2 spectra[2][3]. DIA can provide more comprehensive coverage of the proteome, as it can detect and quantify all peptides in a sample, regardless of their abundance or m/z values[4]. DIA also allows for reproducible quantification, similar to multiple reaction monitoring (MRM) or parallel reaction monitoring (PRM) [4]. In contrast, DDA is better suited for discovery proteomics, where the goal is to identify as many proteins as possible, rather than quantifying them[1].


## Application of DIA (Data-independent acquisition) in acetylated modified proteomics?


Acetylation is a common post-translational modification that occurs on lysine residues in proteins. DIA technology has been applied to acetylated modified proteomics to improve the accuracy of quantification. DIA can detect and quantify all acetylated peptides in a sample, regardless of their abundance or m/z values, which is important for accurate quantification of modified peptides[5]. DIA can also provide more comprehensive coverage of the proteome, which is important for identifying novel acetylation sites and understanding the functional significance of acetylation[5]. In addition, DIA can reduce the need for prior knowledge of the modified peptides, making it a useful tool for discovery proteomics[5].


## How DIA technology improves accuracy in acetylation modification quantification?


DIA technology improves accuracy in acetylation modification quantification by providing more comprehensive coverage of the proteome and detecting and quantifying all acetylated peptides in a sample, regardless of their abundance or m/z values[4][5]. This is important for accurate quantification of modified peptides, as it reduces the bias towards highly abundant peptides that can occur with other methods, such as DDA[1]. In addition, DIA can reduce the need for prior knowledge of the modified peptides, making it a useful tool for discovery proteomics[5]. Overall, DIA technology has the potential to improve our understanding of acetylation and its functional significance in biological systems.


Citations:

[1] https://www.technologynetworks.com/proteomics/lists/data-dependent-vs-data-independent-proteomic-analysis-331712

[2] https://www.creative-proteomics.com/ngpro/pct-dia-services.html

[3] https://clinicalproteomicsjournal.biomedcentral.com/articles/10.1186/s12014-022-09359-9

[4] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821292/

[5] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5817406/