、什么是爬虫?
它是指向网站发起请求,获取资源后分析并提取有用数据的程序;
爬虫的步骤:
1、发起请求
使用http库向目标站点发起请求,即发送一个Request
Request包含:请求头、请求体等
2、获取响应内容
如果服务器能正常响应,则会得到一个Response
Response包含:html,json,图片,视频等
3、解析内容
解析html数据:正则表达式(RE模块),第三方解析库如Beautifulsoup,pyquery等
解析json数据:json模块
解析二进制数据:以wb的方式写入文件
4、保存数据
数据库(MySQL,Mongdb、Redis)文件
二、本次选择爬虫的数据来源于链家,因为本人打算搬家,想观察一下近期的链家租房数据情况,所以就直接爬取了链家数据,相关的代码如下:
from bs4 import BeautifulSoup as bs
from requests.exceptions import RequestException
import requests
import re
from DBUtils import DBUtils
def main(response): #web页面数据提取与入库操作
html=bs(response.text, 'lxml')
for data in html.find_all(name='div',attrs={"class":"content__list--item--main"}):
try:
print(data)
Community_name=data.find(name="a", target="_blank").get_text(strip=True)
name=str(Community_name).split(" ")[0]
sizes=str(Community_name).split(" ")[1]
forward=str(Community_name).split(" ")[2]
flood=data.find(name="span",class_="hide").get_text(strip=True)
flood=str(flood).replace(" ","").replace("/","")
sqrt=re.compile("\d\d+㎡")
area=str(data.find(text=sqrt)).replace(" ","")
maintance=data.find(name="span",class_="content__list--item--time oneline").get_text(strip=True)
maintance=str(maintance)
price=data.find(name="span",class_="content__list--item-price").get_text(strip=True)
price=str(price)
print(name,sizes,forward,flood,maintance,price)
insertsql="INSERT INTO test_log.`information`(Community_name,size,forward,area,flood,maintance,price) VALUES " \
"('"+name+"','"+sizes+"','"+forward+"','"+area+"','"+flood+"','"+maintance+"','"+price+"');"
insert_sql(insertsql)
except:
print("have an error!!!")
def insert_sql(sql): #数据入库操作
dbconn=DBUtils("test6")
dbconn.dbExcute(sql)
def get_one_page(urls): #获取web页面数据
try:
headers={"Host": "bj.lianjia.com",
"Connection": "keep-alive",
"Cache-Control": "max-age=0",
"Upgrade-Insecure-Requests": "1",
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.61 Safari/537.36",
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9",
"Sec-Fetch-Site": "none",
"Sec-Fetch-Mode": "navigate",
"Sec-Fetch-User": "?1",
"Sec-Fetch-Dest": "document",
"Accept-Encoding": "gzip, deflate, br",
"Accept-Language": "zh-CN,zh;q=0.9",
"Cookie": "lianjia_uuid=fa1c2e0b-792f-4a41-b48e-78531bf89136; _smt_uid=5cfdde9d.cbae95b; sensorsdata2015jssdkcross=%7B%22distinct_id%22%3A%2216b3fad98fc1d1-088a8824f73cc4-e353165-2710825-16b3fad98fd354%22%2C%22%24device_id%22%3A%2216b3fad98fc1d1-088a8824f73cc4-e353165-2710825-16b3fad98fd354%22%2C%22props%22%3A%7B%22%24latest_traffic_source_type%22%3A%22%E8%87%AA%E7%84%B6%E6%90%9C%E7%B4%A2%E6%B5%81%E9%87%8F%22%2C%22%24latest_referrer%22%3A%22https%3A%2F%2Fwww.baidu.com%2Flink%22%2C%22%24latest_referrer_host%22%3A%22www.baidu.com%22%2C%22%24latest_search_keyword%22%3A%22%E6%9C%AA%E5%8F%96%E5%88%B0%E5%80%BC%22%7D%7D; _ga=GA1.2.1891741852.1560141471; UM_distinctid=17167f490cb566-06c7739db4a69e-4313f6b-100200-17167f490cca1e; Hm_lvt_9152f8221cb6243a53c83b956842be8a=1588171341; lianjia_token=2.003c978d834648dbbc2d3aa4b226145cd7; select_city=110000; lianjia_ssid=fc20dfa1-6afb-4407-9552-2c4e7aeb73ce; CNZZDATA1253477573=1893541433-1588166864-https%253A%252F%252Fwww.baidu.com%252F%7C1591157903; CNZZDATA1254525948=1166058117-1588166331-https%253A%252F%252Fwww.baidu.com%252F%7C1591154084; CNZZDATA1255633284=1721522838-1588166351-https%253A%252F%252Fwww.baidu.com%252F%7C1591158264; CNZZDATA1255604082=135728258-1588168974-https%253A%252F%252Fwww.baidu.com%252F%7C1591153053; _jzqa=1.2934504416856578000.1560141469.1588171337.1591158227.3; _jzqc=1; _jzqckmp=1; _jzqy=1.1588171337.1591158227.1.jzqsr=baidu.-; _qzjc=1; _gid=GA1.2.1223269239.1591158230; _qzja=1.1313673973.1560141469311.1588171337488.1591158227148.1591158227148.1591158233268.0.0.0.7.3; _qzjto=2.1.0; srcid=eyJ0Ijoie1wiZGF0YVwiOlwiMThmMWQwZTY0MGNiNTliNTI5OTNlNGYxZWY0ZjRmMmM3ODVhMTU3ODNhNjMwODhlZjlhMGM2MTJlMDFiY2JiN2I4OTBkODA0M2Q0YTM0YzIyMWE0YzIwOTBkODczNTQwNzM0NTc1NjBlM2EyYTc3NmYwOWQ3OWQ4OWJjM2UwYzAwY2RjMTk3MTMwNzYwZDRkZTc2ODY0OTY0NTA5YmIxOWIzZWQyMWUzZDE3ZjhmOGJmMGNmOGYyMTMxZTI1MzIxMGI4NzhjNjYwOGUyNjc3ZTgxZjA2YzUzYzE4ZjJmODhmMTA1ZGVhOTMyZTRlOTcxNmNiNzllMWViMThmNjNkZTJiMTcyN2E0YzlkODMwZWIzNmVhZTQ4ZWExY2QwNjZmZWEzNjcxMjBmYWRmYjgxMDY1ZDlkYTFhMDZiOGIwMjI2NTg1ZGU4NTQyODBjODFmYTUyYzI0NDg5MjRlNWI0N1wiLFwia2V5X2lkXCI6XCIxXCIsXCJzaWduXCI6XCI2Yzk3M2U5M1wifSIsInIiOiJodHRwczovL2JqLmxpYW5qaWEuY29tL2RpdGllenVmYW5nL2xpNDY0NjExNzkvcnQyMDA2MDAwMDAwMDFsMSIsIm9zIjoid2ViIiwidiI6IjAuMSJ9"}
response=requests.get(url=urls, headers=headers)
main(response)
except RequestException:
return None
if __name__=="__main__":
for i in range(64): #遍历翻页
if(i==0):
urls="https://bj.lianjia.com/ditiezufang/li46461179/rt200600000001l1/"
get_one_page(urls)
else:
urls="https://bj.lianjia.com/ditiezufang/li46461179/rt200600000001l1/".replace("rt","pg"+str(i))
get_one_page(urls)
说明:本代码中使用了《Python之mysql实战》的那篇文章,请注意结合着一起来看。
三、以下是获取到的数据入库后的结果图
结论:爬虫是获取数据的重要方式之一,我们需要掌握多种方式去获取数据。机器学习是基于数据的学习,我们需要为机器学习做好数据的准备,大家一起加油!
提:
mysql自己的参数生成html,不尽人意......
mysql -h$host -u$user -p$pass -H --skip-column-names $database -e "source get_query.sql" > /tmp/query.html
1、热身一下,巧用awk构造mysql测试数据
#/bin/sh
echo "line" > file.dat
echo "" > insert.sql
awk 'BEGIN{
system("echo \"create table sysbench (col1 INT, col2 INT,col3 INT);\" | mysql -uroot -p123456 taobao")
for (i=1; i<=100; i++)
{
print " insert into sysbench values (" i "," i*i "," i*i*i ");" >> "insert.sql"
}
}
END{
system("mysql -uroot -p123456 -D taobao < insert.sql")
}' file.dat
2、
1)主要使用pt-query-digest来完成入库操作
192.168.0.2为慢查询入库的机器
pt-query-digest --user=dba --password=123456 --review h=192.168.0.2,D=slow_query,t=global_query_review --history h=192.168.0.2,D=slow_query,t=global_query_review_history --no-report --filter=" $event->{Bytes}=length($event->{arg}) and $event->{hostname}=\"`ifconfig eth1|grep "inet addr"|awk '{print }'|awk -F':' '{print ":3306"}'`\" " /data/3306/slow_query.log
2)主要涉及到两个表global_query_review和global_query_review_history,去percona官网copy创建或者pt工具自动创建
计算下慢查询排行,根据Query_time_pct_95来排序,并且生成html格式
#/bin/sh
mysql -uroot -p123456 slow_query -N -e "select db_max as DBname,ifnull(sum(ts_cnt),0) as Ts_cnt,sum(cast(Query_time_sum AS SIGNED )) as Query_time_sum,avg(cast(Query_time_pct_95 AS SIGNED )) as Avg_Query_time_pct_95,sum(cast(Lock_time_sum AS SIGNED )) as Lock_time_sum,sum(cast(Rows_sent_sum AS SIGNED )) as Rows_sent_sum,sum(cast(Rows_examined_sum AS SIGNED )) as Rows_examined_sum,sum(cast(Rows_affected_sum AS SIGNED )) as Rows_affected_sum,sum(ifnull(cast(Tmp_table_sum AS SIGNED ),0)) as Tmp_table_sum,sum(ifnull(cast(Filesort_sum AS SIGNED ),0)) as Filesort_sum,sum(ifnull(cast(Full_scan_sum AS SIGNED ),0)) as Full_scan_sum from global_query_review a,global_query_review_history b where a.checksum=b.checksum and db_max not in ('information_schema') and b.Query_time_pct_95 >=1 group by db_max order by Avg_Query_time_pct_95 desc;" >slow.txt
echo "hello everybody:<table border=1><tr><td>Number</td><td>DBname</td><td>Ts_cnt</td><td>Query_time_sum</td><td>Avg_Query_time_pct_95</td><td>Lock_time_sum</td><td>Rows_sent_sum</td><td>Rows_examined_sum</td><td>Rows_affected_sum</td><td>Tmp_table_sum</td><td>Filesort_sum</td><td>Full_scan_sum</td>" >./query.html
awk '{ print FNR " " >awk '{ print FNR " " $0 }' ./slow.txt | awk '{if (NR % 2==1) print "<tr style=\"background:#58ACFA\"><td>" $1 "</td><td align=\"left\">" $2 "</td><td align=\"left\">" $3 "</td><td align=\"left\">" $4 "</td><td align=\"left\">" $5 "</td><td align=\"left\">" $6 "</td><td align=\"left\">" $7 "</td><td align=\"left\">" $8 "</td><td align=\"left\">" $9 "</td><td align=\"left\">" $10 "</td><td align=\"left\">" $11 "</td><td align=\"left\">" $12 "</td></tr>";else print "<tr style=\"background:#F3E2A9\"><td>" $1 "</td><td align=\"left\">" $2 "</td><td align=\"left\">" $3 "</td><td align=\"left\">" $4 "</td><td align=\"left\">" $5 "</td><td align=\"left\">" $6 "</td><td align=\"left\">" $7 "</td><td align=\"left\">" $8 "</td><td align=\"left\">" $9 "</td><td align=\"left\">" $10 "</td><td align=\"left\">" $11 "</td><td align=\"left\">" $12 "</td></tr>";}' >> ./query.html< }' ./slow.txt | awk '{if (NR % 2==1) print "<tr style=\"background:#58ACFA\"><td>" "</td><td align=\"left\">" "</td><td align=\"left\">" "</td><td align=\"left\">" "</td><td align=\"left\">" "</td><td align=\"left\">" "</td><td align=\"left\">" "</td><td align=\"left\">" "</td><td align=\"left\">" "</td><td align=\"left\">" "</td><td align=\"left\">" "</td><td align=\"left\">" "</td></tr>";else print "<tr style=\"background:#F3E2A9\"><td>" "</td><td align=\"left\">" "</td><td align=\"left\">" "</td><td align=\"left\">" "</td><td align=\"left\">" "</td><td align=\"left\">" "</td><td align=\"left\">" "</td><td align=\"left\">" "</td><td align=\"left\">" "</td><td align=\"left\">" "</td><td align=\"left\">" "</td><td align=\"left\">" "</td></tr>";}' >> ./query.html
echo "</table>" >>./query.html
cat query.html:
hello everybody:<table border=1><tr><td>Number</td><td>DBname</td><td>Ts_cnt</td><td>Query_time_sum</td><td>Avg_Query_time_pct_95</td><td>Lock_time_sum</td><td>Rows_sent_sum</td><td>Rows_examined_sum</td><td>Rows_affected_sum</td><td>Tmp_table_sum</td><td>Filesort_sum</td><td>Full_scan_sum</td>
<tr style="background:#58ACFA"><td>1</td><td align="left">dba</td><td align="left">0</td><td align="left">18</td><td align="left">6.0000</td><td align="left">0</td><td align="left">0</td><td align="left">2999532</td><td align="left">2999532</td><td align="left">0</td><td align="left">0</td><td align="left">0</td></tr>
</table>
3)最后一步,发送邮件,大功告成。
/usr/bin/python sendmail.py aa@gmail.com Mysql Slowquery by Query_time_pct_95 >=1 ./query.html
这样就可以发送html邮件了。
觉得不错的朋友可以读完关注下,每周都有定期更新的精选内容分享给大家,感谢您的支持!
秒杀系统难做的原因:库存只有一份,所有人会在集中的时间读和写这些数据。例如小米手机每周二的秒杀,可能手机只有1万部,但瞬时进入的流量可能是几百几千万。又例如12306抢票,亦与秒杀类似,瞬时流量更甚。
主要需要解决的问题有两个:
对于第一个问题,已经很容易想到用缓存来处理抢购,避免直接操作数据库,例如使用Redis。重点在于第二个问题,常规写法:
查询出对应商品的库存,看是否大于0,然后执行生成订单等操作,但是在判断库存是否大于0处,如果在高并发下就会有问题,导致库存量出现负数
流量到了亿级别,常见站点架构如上:
1.将请求尽量拦截在系统上游:传统秒杀系统之所以挂,请求都压倒了后端数据层,数据读写锁冲突严重,并发高响应慢,几乎所有请求都超时,流量虽大,下单成功的有效流量甚小【一趟火车其实只有2000张票,200w个人来买,基本没有人能买成功,请求有效率为0】
2.充分利用缓存:这是一个典型的读多写少的应用场景【一趟火车其实只有2000张票,200w个人来买,最多2000个人下单成功,其他人都是查询库存,写比例只有0.1%,读比例占99.9%】,非常适合使用缓存。
4.1.浏览器层请求拦截
点击了“查询”按钮之后,系统那个卡呀,进度条涨的慢呀,作为用户,我会不自觉的再去点击“查询”,继续点,继续点,点点点。。。有用么?平白无故的增加了系统负载(一个用户点5次,80%的请求是这么多出来的),怎么整?
如此限流,80%流量已拦。
4.2.站点层请求拦截与页面缓存
浏览器层的请求拦截,只能拦住小白用户(不过这是99%的用户哟),高端的程序员根本不吃这一套,写个for循环,直接调用你后端的http请求,怎么整?
如此限流,又有99%的流量会被拦截在站点层
4.3.服务层请求拦截与数据缓存
站点层的请求拦截,只能拦住普通程序员,高级黑客,假设他控制了10w台肉鸡(并且假设买票不需要实名认证),这下uid的限制不行了吧?怎么整?
如此限流,只有非常少的写请求,和非常少的读缓存mis的请求会透到数据层去,又有99.9%的请求被拦住了
4.4.数据层闲庭信步
到了数据这一层,几乎就没有什么请求了,单机也能扛得住,还是那句话,库存是有限的,小米的产能有限,透这么多请求来数据库没有意义。
4.5.mysql批量入库提高INSERT效率
使用redis队列(list),push和pop操作保证了原子性的实现。即使有很多用户同时到达,也是依次执行。(mysql事务在高并发下性能下降很厉害)
先将商品库存存入队列:
<?php $store=1000; //商品库存 $redis=new Redis(); $result=$redis->connect('127.0.0.1',6379); $res=$redis->llen('goods_store'); for($i=0; $i<$store; $i++){ $redis->lpush('goods_store',1); } echo $redis->llen('goods_store'); ?>
客户执行下单操作:
$redis=new Redis(); $result=$redis->connect('127.0.0.1',6379); $count=$redis->lpop('goods_store'); if(!$count){ echo '抢购失败!'; return; }
缓存也是可以应对写请求的,比如我们就可以把数据库中的库存数据转移到Redis缓存中,所有减库存操作都在Redis中进行,然后再通过后台进程把Redis中的用户秒杀请求同步到数据库中
没什么总结了,上文应该描述的非常清楚了,对于秒杀系统,再次重复下两个架构优化思路
读到这的朋友可以转发支持下,同时可以关注我,每周都有定期更新的精选内容分享给大家!
*请认真填写需求信息,我们会在24小时内与您取得联系。